
Software (Systems) 
Architecture Foundations

Lecture #8

(Boldly) To the Future ...

Alar Raabe



14.5.18 Copyright © Alar Raabe 20182

Recap of Last Lecture

• Architect has overall responsibility for ensuring
– the completeness and fitness-for-purpose of the architecture, in terms of 

adequately addressing all the concerns of its stakeholders

– the integrity of the architecture, satisfactorily reconciling the conflicting 
concerns of different stakeholders, and showing the trade-offs made in doing so

• A key element in a successful Architecture Governance is a cross-
organization Architecture Board

– representative of all the key stakeholders in the architecture, and typically 
comprising a group of executives responsible for the review and maintenance of 
the overall architecture

• Architect role in
– traditional development is to design the architecture – to make the decisions
– agile development is to enable/support/facilitate team to design the 

architecture – not to make the decisions

If a builder builds a house for someone, and does not 
construct it properly, and the house falls and kills its 
owner, then that builder shall be put to death

Hammurabi, King of Babylon (1780 BC) 

If a builder builds a house for someone, and does not 
construct it properly, and the house falls and kills its 
owner, then that builder shall be put to death

Hammurabi, King of Babylon (1780 BC) 



14.5.18 Copyright © Alar Raabe 20183

Content

• Architecting for cloud
– principles
– design patterns

• Architecture of adaptive systems
– reference model of adaptive systems
– self-awareness

• Architecture of AI
– machine learning systems
– cognitive system architecture (example)
– neural networks (architecture styles of neural networks)

• Conclusions

45. The architect allows things to 
happen. He shapes events as they 
come. He steps out of the ways and 
let the design speak for itself.

Lao Tsu (by Philippe Kruchten)

45. The architect allows things to 
happen. He shapes events as they 
come. He steps out of the ways and 
let the design speak for itself.

Lao Tsu (by Philippe Kruchten)



14.5.18 Copyright © Alar Raabe 20184

Change ...



14.5.18 Copyright © Alar Raabe 20185

Architecting for Cloud

Amazon Web-Services CloudAmazon Web-Services Cloud

Pictures © Amazon



14.5.18 Copyright © Alar Raabe 20186

Architecting for Cloud
Design Principles for AWS (EC2)

• Scalability
– Scaling vertically – resizing resource – very easy, but there’s hard limit
– Scaling horizontally – increasing number of resources

• separate Stateless Components (no knowledge of previous interactions) from Stateful Components
• Distributed Processing – divide task and data into small fragments

• Disposable Resources Instead of Fixed Servers
– Instantiating Compute Resources – Bootstrapping or Golden Images (snapshots for faster start times) or 

Hybrid (both)
– Infrastructure as Code – all infrastructure assets are programmable – same techniques apply as for code

• Loose Coupling
– Well Defined Interfaces – hide technical implementation
– Service Discovery – avoid hard-coding deployment details
– Asynchronous Integration – use message queues
– Graceful Failure – handle failures

• Services, Not Servers
– Managed Services – provided managed services as building blocks for applications
– Serverless Architectures – remote execution of mobile code

Amazon Web-Services CloudAmazon Web-Services Cloud



14.5.18 Copyright © Alar Raabe 20187

Architecting for Cloud
Design Principles for AWS (EC2)

• Automation – react to various life-cycle and out of order events and specific situations

• Databases – use right database technology for each workload
– Relational Databases

• Scalability – can scale horizontally by replication for read and data partitioning or sharding for write
• High Availability – automatic failover to replicated standby instance
• Anti Patterns – if you don’t need complex queries (e.g. joins), consider NoSQL database or for large objects the 

storage service

– NoSQL Databases
• Scalability – can scale horizontally by data partitioning or replication for both read and write
• High Availability – synchronous replication
• Anti-Patterns – if you need complex queries or transactions, consider relational database or for large objects 

the storage service

– Data Warehouse
• Scalability – use columnar data storage and massively parallel multiprocessing
• High Availability – use replication
• Anti-Patterns – don’t do OLTP in DW

– Search
• Scalability – use data partitioning and replication
• High Availability – store data reduntantly

Amazon Web-Services CloudAmazon Web-Services Cloud



14.5.18 Copyright © Alar Raabe 20188

Architecting for Cloud
Design Principles for AWS (EC2)

• Removing Single Points of Failure – build fault tolerant applications
– Introduce Redundancy – either standby (using failover) or active redundancy
– Detect Failure – automatically detect and react to failure (design health checks)
– Durable Data Storage – synchronous replication for integrity, asynchronous replication, or quorum-

based replication
– Automated Multi-Data Center Resilience – availability zones
– Fault Isolation and Traditional Horizontal Scaling – use Shuffle Sharding – group the instances of your 

system

• Caching
– Application Data Caching
– Edge Caching – use content delivery network for static content

• Security
– Utilize AWS Features for Defense in Depth
– Offload Security Responsibility to AWS
– Reduce Privileged Access
– Security as Code
– Real-Time Auditing – do continuous monitoring and logging

Amazon Web-Services CloudAmazon Web-Services Cloud



14.5.18 Copyright © Alar Raabe 201810

Architecting for Cloud

Open Data Center AllianceOpen Data Center Alliance

Pictures © Open Data Center Alliance



14.5.18 Copyright © Alar Raabe 201811

Principles of Cloud Application Architecture

• Resilient to failure
– Resiliency is designed into the application, rather than wrapped around it after the fact
– Failures in cloud infrastructure are handled fluidly without interruption of service

• Resilient to latency
– Applications adapt gracefully to latency rather than timing out/failing

• Secure
– Applications are based on secure life-cycle standards and include built-in security
– Data at rest and in transit is encrypted. APIs are protected by authentication and authorization

• Location independent
– Applications discover services dynamically rather than relying on hard-coded dependencies

• Elastically scalable
– Applications respond to demand levels, growing and shrinking as required, in and among clouds

• SOA/Compose-ability
– Applications consume and expose web services with APIs discoverable at runtime
– The structure incorporates small, stateless components designed to scale out

Open Data Center AllianceOpen Data Center Alliance



14.5.18 Copyright © Alar Raabe 201812

Principles of Cloud Application Architecture

• Designed for manageability
– Applications are instrumented and expose metrics and management interfaces

• Infrastructure independent
– Applications make no assumptions about the underlying infrastructure, using abstractions in relation to the 

operating system, file system, database, and so on

• Defined tenancy
– Each application should have a deliberate, defined single tenancy or multitenancy model

• Available end-user self-service
– Users should be able to register themselves to use the app through a self-service registration interface, 

without entering an IT service request

• Bandwidth aware
– APIs and application protocols are designed to minimize bandwidth consumption

• Cost and resource consumption aware
– Application architecture is designed to minimize costs due to bandwidth, CPU, storage consumption, and 

I/O requests

Open Data Center AllianceOpen Data Center Alliance



14.5.18 Copyright © Alar Raabe 201813

Cloud Application Design Patterns

• Circuit Breaker – detect a fault in a circuit and trip to a safe fallback state, or open

• Request Queuing – use the queue as a buffer between the requests and processing service(s) preventing a heavy load 
from impacting the service causing it to fail or the request to time out

• Request Collapsing – collapse multiple requests over a given time interval into a single request, to reduce network 
bandwidth and load on the API end point, allowing it to scale to support a larger number of concurrent users

• Object Change Notification – (or Observer) use implicit invocation to enables an application to scale elastically (since 
components are no longer tightly coupled, additional instances can be added dynamically to handle increased load)

• Service Discovery – use service registry through which only healthy service instances are located at request time

• Microservices – to improve elasticity, decompose monolithic services functionally into fine-grained microservices, each 
with a single function

• Stateless Services – to provide Reliability (simple retry), Scalability, Visibility (both request and response payloads 
contain all the information needed to understand the transaction), Simplicity (no need to manage data or locks)

• Configuration Service – use External Configuration Store and Runtime Reconfiguration (handle configuration change 
events)

• Authorization Pattern – in a cloud environment, the network cannot be assumed to be secure because it is not under the 
application owner’s control, use API Authorization to ensure that only trusted parties can use API

Open Data Center AllianceOpen Data Center Alliance



14.5.18 Copyright © Alar Raabe 201814

Content

• Architecting for cloud
– principles
– design patterns

• Architecture of adaptive systems
– reference model of adaptive systems
– self-awareness

• Architecture of AI
– machine learning systems
– cognitive system architecture (example)
– neural networks (architecture styles of neural networks)

• Conclusions

45. The architect allows things to 
happen. He shapes events as they 
come. He steps out of the ways and 
let the design speak for itself.

Lao Tsu (by Philippe Kruchten)

45. The architect allows things to 
happen. He shapes events as they 
come. He steps out of the ways and 
let the design speak for itself.

Lao Tsu (by Philippe Kruchten)



14.5.18 Copyright © Alar Raabe 201815

Architecture of Adaptive Systems

• Control Loop

• Reflection/Introspection
– Traditional (a) vs. Reflective System (b)



14.5.18 Copyright © Alar Raabe 201816

Architecture of Adaptive Systems
Reference Model (MAPE-K)

• Monitor
– Collects the details from the managed resources e.g. topology 

information, metrics (e.g. offered capacity and throughput), 
configuration property settings etc., aggregates, correlates and 
filters these until it determines a symptom that needs to be 
analyzed

• Analyze
– Perform complex data analysis and reasoning on the symptoms 

provided by the monitor function, is influenced by stored 
knowledge data, if changes are required, a change request is 
passed to the plan function

• Plan
– Structures the actions needed to achieve goals and objectives (to 

enact a desired alteration in the managed resource)

• Execute
– Changes the behavior of the managed resource using effectors, 

based on the actions recommended by the plan function

• Knowledge Management
– Standard data shared among the monitor, analyze, plan and 

execute functions (incl. data such as topology information, 
historical logs, metrics, symptoms and policies), created by the 
monitor part while execute part might update the knowledge



14.5.18 Copyright © Alar Raabe 201817

Architecture of Adaptive Systems
(Self-Awareness)



14.5.18 Copyright © Alar Raabe 201818

Content

• Architecting for cloud
– principles

– design patterns

• Architecture of adaptive systems
– reference model of adaptive systems

– self-awareness

• Architecture of AI
– machine learning systems

– cognitive system architecture (example)

– neural networks (architecture styles of neural networks)

• Internet-of-Things
– reference architecture

• Conclusions

45. The architect allows things to 
happen. He shapes events as they 
come. He steps out of the ways and 
let the design speak for itself.

Lao Tsu (by Philippe Kruchten)

45. The architect allows things to 
happen. He shapes events as they 
come. He steps out of the ways and 
let the design speak for itself.

Lao Tsu (by Philippe Kruchten)



14.5.18 Copyright © Alar Raabe 201819

Architecture of Machine Learning
(Gartner)



14.5.18 Copyright © Alar Raabe 201820

Cognitive System Architecture
DeepQA Architecture (IBM Watson)

Pictures © IBM



14.5.18 Copyright © Alar Raabe 201821

Architecture of AI Systems
Problems in Machine Learning Systems

• Complex Models Erode Boundaries
– Entanglement – data and models are entangled
– Hidden Feedback Loops – not all feedback loops and their effects are easily seen
– Undeclared Consumers – predictions might be used in places where they shouldn’t

• Data Dependencies Cost More than Code Dependencies
– Unstable Data Dependencies  – relationships in data inevitably change over time
– Underutilized Data Dependencies  – some features in data do not affect the accuracy of the outcome
– Static Analysis of Data Dependencies  – it is difficult to track data usage in the system
– Correction Cascades – using different model with the correction creates dependency of models

• System Level Spaghetti
– Glue Code
– Pipeline Jungles
– Dead Experimental Codepaths
– Configuration Debt

• Dealing with Changes in the External World
– Fixed Threshold in Dynamic Systems – manually selected thresholds become wrong when data changes
– When Correlations No Longer Correlate
– Monitoring and Testing – testing is not enough because world is changing

Machine Learning: The High-Interest 
Credit Card of Technical Debt

Google

Machine Learning: The High-Interest 
Credit Card of Technical Debt

Google



14.5.18 Copyright © Alar Raabe 201822

Architecture of AI Systems
Neural Networks

• Binary Classification

• Multi-Class Classification



14.5.18 Copyright © Alar Raabe 201823

Architecture of AI Systems
Neural Networks

• Deep Learning for Image Recognition (LeNet5, 1994)
– convolutional (with input neurons arranged in 3 dimensions: width, height, depth) 

neural network with sequence of 3 layers:
• convolution, pooling, non-linearity

– use convolution to extract spatial features

– subsample using spatial average of maps

– multi-layer neural network (MLP) as final classifier

– sparse connection matrix between layers to avoid large computational cost



14.5.18 Copyright © Alar Raabe 201824

Architecture Styles of
Neural Networks

Pictures © Asimov Institute



14.5.18 Copyright © Alar Raabe 201825

Architecture Styles of
Neural Networks

Pictures © Asimov Institute



14.5.18 Copyright © Alar Raabe 201826

Visualizing Architecture of
Neural Networks

• Visualization of
of Machine Learning
Process

“MRI” of Robot !“MRI” of Robot !



14.5.18 Copyright © Alar Raabe 201827

Content

• Architecting for cloud
– principles
– design patterns

• Architecture of adaptive systems
– reference model of adaptive systems
– self-awareness

• Architecture of AI
– machine learning systems
– cognitive system architecture (example)
– neural networks (architecture styles of neural networks)

• Conclusions

45. The architect allows things to 
happen. He shapes events as they 
come. He steps out of the ways and 
let the design speak for itself.

Lao Tsu (by Philippe Kruchten)

45. The architect allows things to 
happen. He shapes events as they 
come. He steps out of the ways and 
let the design speak for itself.

Lao Tsu (by Philippe Kruchten)



14.5.18 Copyright © Alar Raabe 201828

Conclusions

• Cloud is not under your control
– build for unattended working in unknown, volatile and unsecure environment

• Adaptive systems need to be self-aware

• In machine learning systems data and models are entangled

• External world is changing – artificial intelligence models get out of phase

The best way to predict the 
future is to invent it

Alan Kay, 1971

The best way to predict the 
future is to invent it

Alan Kay, 1971



14.5.18 Copyright © Alar Raabe 201829

Conclusions for the whole Course

• Software Architecture is a
– fundamental conception of a software system in its environment embodied in elements, their
– relationships to each other and to the environment, and principles guiding software system design and 

evolution

• Architecture with desirable properties doesn't emerge itself, it needs to be designed

• Value of Software Systems Architecture
– Designing architecture allows us to address concerns and to achieve required and desirable properties of 

software systems
– Architecture allows us to reason (i.e. answer questions) about the software system and its properties 

beforehand (without building and testing the actual system)

• Value of Software Systems Architecture Description
– As a document, it provides guidance for constructing and evolving the software system, and allows us to record 

and communicate our knowledge and decisions about the software system architecture

• Software Architecture creates choices/options, which have value – designing and building an 
architecture is an investment activity

• Understand the larger context and isolate your system from the environment

Architecture is the important 
stuff – whatever that is !

Ralph Johnson

Architecture is the important 
stuff – whatever that is !

Ralph Johnson



14.5.18 Copyright © Alar Raabe 201830

Thank You!

55. The architect lets all things come 
and go effortlessly, without desire.
He never expect results; thus he is 
never disappointed.
He is never disappointed, thus his 
spirit never grows old.

Lao Tsu (by Philippe Kruchten)

55. The architect lets all things come 
and go effortlessly, without desire.
He never expect results; thus he is 
never disappointed.
He is never disappointed, thus his 
spirit never grows old.

Lao Tsu (by Philippe Kruchten)



14.5.18 Copyright © Alar Raabe 201831

Questions

• What are main design constraints 
for the cloud (ready) software 
systems?

• List main principles for architecting 
software systems for cloud?

• ...

• What are the additional parts of 
adaptive (software) systems? How 
adaptive (software) systems 
architecture differs?

• What are the main parts of learning 
systems?

• How to integrate artificial intelligence 
(component) into a software 
system?

• ...



14.5.18 Copyright © Alar Raabe 201832

Literature

• https://www.gartner.com/binaries/content/assets/events/keywords/catalyst/catus8/preparing_and_ar
chitecting_for_machine_learning.pdf

• http://www.redbooks.ibm.com/redbooks/pdfs/sg248387.pdf

• https://medium.com/@james_aka_yale/the-8-neural-network-architectures-machine-learning-resea
rchers-need-to-learn-2f5c4e61aeeb

• http://www.asimovinstitute.org/neural-network-zoo/

• https://www.graphcore.ai/posts/what-does-machine-learning-look-like

• https://publishup.uni-potsdam.de/opus4-ubp/frontdoor/deliver/index/docId/6255/file/tbhpi66.pdf

• https://www.hpi.uni-potsdam.de/giese/public/mdelab/mdelab-projects/software-engineering-for-self
-adaptive-systems/morisia/

• http://homepage.lnu.se/staff/daweaa/ActivFORMS/Model-based-simulation.htm

• http://prlewis.com/files/WICSA-final.pdf

• https://d1.awsstatic.com/whitepapers/AWS_Cloud_Best_Practices.pdf

• https://slidelegend.com/architecting-cloud-aware-applications-open-data-center-alliance_59ba4f
921723dd2ca91c7991.html

• https://static.googleusercontent.com/media/research.google.com/en//pubs/archive/43146.pdf

•

• … Google “architecting cloud” + “adaptive systems” + “artificial intelligence” + “machine learning” ...



14.5.18 Copyright © Alar Raabe 201833 Pictures © International Business Machines Corp.

https://www.gartner.com/binaries/content/assets/events/keywords/catalyst/catus8/preparing_and_architecting_for_machine_learning.pdf
https://www.gartner.com/binaries/content/assets/events/keywords/catalyst/catus8/preparing_and_architecting_for_machine_learning.pdf
http://www.redbooks.ibm.com/redbooks/pdfs/sg248387.pdf
https://medium.com/@james_aka_yale/the-8-neural-network-architectures-machine-learning-researchers-need-to-learn-2f5c4e61aeeb
https://medium.com/@james_aka_yale/the-8-neural-network-architectures-machine-learning-researchers-need-to-learn-2f5c4e61aeeb
http://www.asimovinstitute.org/neural-network-zoo/
https://www.graphcore.ai/posts/what-does-machine-learning-look-like
https://publishup.uni-potsdam.de/opus4-ubp/frontdoor/deliver/index/docId/6255/file/tbhpi66.pdf
https://www.hpi.uni-potsdam.de/giese/public/mdelab/mdelab-projects/software-engineering-for-self-adaptive-systems/morisia/
https://www.hpi.uni-potsdam.de/giese/public/mdelab/mdelab-projects/software-engineering-for-self-adaptive-systems/morisia/
http://homepage.lnu.se/staff/daweaa/ActivFORMS/Model-based-simulation.htm
http://prlewis.com/files/WICSA-final.pdf
https://d1.awsstatic.com/whitepapers/AWS_Cloud_Best_Practices.pdf
https://slidelegend.com/architecting-cloud-aware-applications-open-data-center-alliance_59ba4f921723dd2ca91c7991.html
https://slidelegend.com/architecting-cloud-aware-applications-open-data-center-alliance_59ba4f921723dd2ca91c7991.html
https://static.googleusercontent.com/media/research.google.com/en//pubs/archive/43146.pdf

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33

