
Software (Systems) 
Architecture Foundations

Introductory Lectures

Alar Raabe



7.6.18 Copyright © Alar Raabe 2018

Alar Raabe

• Nearly 40 years in IT
– held various roles from programmer to a software architect and to enterprise business 

architect

• 15 years in insurance and last 10 years in banking domain
– developed model-driven technology for insurance applications product-line (incl. 

models, method/process, platform/framework and tools)

– developing/implementing business architecture framework and methods for a banking 
group

• Interests
– software engineering (tools and technologies)

– software architectures

– model-driven software development
– industry reference models (e.g. IBM IAA, IFW, ...)

– domain specific languages



7.6.18 Copyright © Alar Raabe 2018

Course Purpose 

• Purpose – to provide understanding of
– the core concepts in the discipline of software (systems) architecture
– overview of different architecture styles
– how software architecture affects quality attributes of the software systems
– the value of software architecture and the architecture decisions

• Results
– General understanding of the related concepts and techniques
– Basic skills to

• describe the architecture of software systems

• evaluate the architecture of software systems

• reason upon architectural decisions

• organize the architecture work and governance

Architecture is about:
 Durability (firmitas)
 Utility (utilitas)
 Beauty (venustas)

Marcus Vitruvius Pollio
(Rome, 1st century BC)

Architecture is about:
 Durability (firmitas)
 Utility (utilitas)
 Beauty (venustas)

Marcus Vitruvius Pollio
(Rome, 1st century BC)



7.6.18 Copyright © Alar Raabe 2018

(Some) Sources

[1] Mary Shaw, David Garlan, Software Architecture, Perspectives on an Emerging 
Discipline, Prentice Hall,1996

[2] Len Bass, Paul Clements, Rick Kazman, Software Architecture in Practice, 2nd ed., 
Addison-Wesley, 2003

[3] Paul Clements, Felix Bachmann, Len Bass, David Garlan, James Ivers, Reed Little, 
Robert Nord, Judith Stafford, Documenting Software Architectures, Views and 
Beyond, Addison-Wesley, 2003

[4] PaulClements, Rick Kazman, Mark Klein, Evaluating Software Architectures, Methods 
and Case Studies, Addison-Wesley, 2001

[5] R. T. Fielding, Architectural Styles and the Design of Network-based Software 
Architectures, UCI, 2000

[6] ISO/IEC/IEEE 42010, Systems and software engineering — Architecture description 
(IEEE 1471)

[7] Open Group, TOGAF 9

[8] Open Group, ArchiMate 3

● … Google “Software Architecture” …

Mostly CMU SEIMostly CMU SEI



7.6.18 Copyright © Alar Raabe 2018

Why to bother with Architecture

• Architecture is important

– as a cause of certain properties → designing architecture allows us 
to address concerns and to achieve required and desirable properties of 
software systems

– as fundamental conception of software system → architecture allows 
us to reason (i.e. answer questions) about the software system and its 
properties, and foresee those properties without building and testing the 
actual system

– because it creates choices/options, which have value → designing and 
building an architecture is an investment activity

If a builder builds a house for someone, and does not 
construct it properly, and the house falls and kills its 
owner, then that builder shall be put to death

Hammurabi, King of Babylon (1780 BC) 

If a builder builds a house for someone, and does not 
construct it properly, and the house falls and kills its 
owner, then that builder shall be put to death

Hammurabi, King of Babylon (1780 BC) 



7.6.18 Copyright © Alar Raabe 2018

Software Architecture and Software Architecture Styles

• What we call Architecture and why we need to bother with it
– Design vs. Architecture and early views on Software Architecture

• Concepts and Terminology related to Software Architecture Description (ISO/IEC 42010)

• Other related Concepts (Abstraction, Complexity, Modularity, Model)

• Different Levels of Commonality in Software and Software Architecture Style

• Classifications of Software Architecture Styles and Analysis of some Software Architecture 
Styles

– Main styles (e.g. data flow, data centered, …)

– “Modern” styles (e.g. micro-services, map-reduce, …)

– Derived (Complex) architecture styles

– Designing an Architecture Style (on example of REST) and Using Software Architecture Styles

Software architecture is 
what software architects do

Kent Beck

Software architecture is 
what software architects do

Kent Beck

Content of the Course



7.6.18 Copyright © Alar Raabe 2018

Documenting and Evaluating Software Architecture

• Why to Document Software Architecture

• CMU SEI “Views & Beyond” Method and some other Documentation Methods

• Other Architecture Documentation Practices
– Architecture Description Languages
– Documenting Architecture in Code

• Architecture and Requirements, Software Quality Models
and Software Quality Attributes

• Measuring Software Quality and Evaluation of Software Architectures
– Quality Attribute Scenarios, Architecture Trade-off Analysis Method (ATAM) and Software 

Metrics

• Cost and Value of Architecture
– Valuation of Architecture Decisions (Option Value of Architecture Decisions)

Designing an architecture without 
documenting it, is like winking at a girl 
in the dark – you know what you´re 
doing, but nobody else does

E. Woods

Designing an architecture without 
documenting it, is like winking at a girl 
in the dark – you know what you´re 
doing, but nobody else does

E. Woods

Content of the Course

Quality mean doing it right 
when no one is looking

Henry Ford

Quality mean doing it right 
when no one is looking

Henry Ford



7.6.18 Copyright © Alar Raabe 2018

Larger Context and from One System to Many

• Larger context
– Hierarchy of Systems and Systems of Systems

• Enterprise Architecture
– Need for Larger Context and Structured Approach
– Some Approaches to Enterprise Architecture
– Standard for Enterprise Architecture (on example of TOGAF)

– Reference Architectures and their Use (on example of BIAN and IBM Industry Models)
– Language for Enterprise Architecture (on example of ArchiMate)

• From one system to many – System Families and Product-Line Architectures

• Model-driven development
– Model as Primary Artifact
– Generative Programming
– Feature Modeling

The significant problems we face 
cannot be solved by the same level 
of thinking that created them

Jeanne W. Ross

The significant problems we face 
cannot be solved by the same level 
of thinking that created them

Jeanne W. Ross

Content of the Course



7.6.18 Copyright © Alar Raabe 2018

Architect Role, Architecture Work and to the Future ...

• Role of Architect and Architecture work
– Architecture Process
– Architecture Governance

• Architecture in the context of agile development
– Scaled Agile Framework (SAFe)

– Disciplined Agile (DA)

• Architecting for Cloud
– Principles and Design Patterns

• Architecture of Adaptive Systems

• Architecture of AI
– Machine Learning Systems

– Cognitive Systems Architecture

– Neural Networks (Architecture Styles)

The best way to predict the 
future is to invent it

Alan Kay, 1971

The best way to predict the 
future is to invent it

Alan Kay, 1971

Content of the Course

If architecture is the important stuff, 
then the architect is the person who 
worries about the important stuff

Martin Fowler

If architecture is the important stuff, 
then the architect is the person who 
worries about the important stuff

Martin Fowler



7.6.18 Copyright © Alar Raabe 2018

Architecture of Neural Networks



7.6.18 Copyright © Alar Raabe 2018

Architecture of Neural Networks



7.6.18 Copyright © Alar Raabe 2018

Thank You!

55. The architect lets all things come 
and go effortlessly, without desire.
He never expect results; thus he is 
never disappointed. He is never 
disappointed, thus his spirit never 
grows old.

Lao Tsu (by Philippe Kruchten)

55. The architect lets all things come 
and go effortlessly, without desire.
He never expect results; thus he is 
never disappointed. He is never 
disappointed, thus his spirit never 
grows old.

Lao Tsu (by Philippe Kruchten)



7.6.18 Copyright © Alar Raabe 2018

Creating Architecture

Requirements

Analysis Model Architecture Model

Design Model

Implementation

+

Functional
Requirements

Architecturally Significant and
Quality Requirements

Requirements
Discipline

Analysis & Design
Discipline

Implementation
Discipline



7.6.18 Copyright © Alar Raabe 201816

Different Architecture Styles → Different Properties

Task 1

Task 2

UI

New Task 2.5

Scheduler

Task 3

DB

Task 1

Task 2

UI

New Task 2.5

Scheduler

Task 3

DB

adding new taskadding new task

Example



7.6.18 Copyright © Alar Raabe 201817

Different Architecture Styles → Different Properties

Task 1

Task 2

UI

Generator

Task 3

DB

Task 1

Task 2

UI

Forecast Task

Task 3

DB

Temp DB

Task 1

Task 2

Task 3

Forecast Task

Generator

Task 1

Task 2

Task 3

adding forecasts of portfolioadding forecasts of portfolio

Example

Scheduler Scheduler



7.6.18 Copyright © Alar Raabe 2018

Service could not correspond 
to what customer wanted as 
free form agreement 
might be misunderstood 
by both parties

Work is ineffient and 
manual – lot of business 
specialists are needed for 
producing service

How we did Business Yesterday

Customer

Business 
Specialist

Agreement

Service

Reports

Free Form 
Agreement



7.6.18 Copyright © Alar Raabe 2018

If customer needs to be 
educated for flling the 
formalized agreement – 
consultants might be 
needed

Service corresponds better to 
what customer wanted as 
formalized agreement is 
easier to understand by 
both parties

Work is effient and fan 
be automated – few if any 
business specialists are 
needed for producing service

How we do Business Today

Customer

Business 
System

Service

Reports

Consultant

Formalized 
Agreement

Request 
Model

Business 
Specialist



7.6.18 Copyright © Alar Raabe 2018

How we Develop Software Today

Business 
Specialist

Specification

Business system could not 
correspond to what business 
specialist wanted as free 
form spefiffation might 
be misunderstood by both 
parties

Work is ineffient and 
manual – lot of software 
specialists are needed for 
producing business systems

Documentation

Software 
Specialist

Business 
System

Free Form 
Specification



7.6.18 Copyright © Alar Raabe 2018

If business specialist 
needs to be educated 
for flling the formalized 
specifcation – analyst 
might be needed

How we should Develop Software

Business 
Specialist

Formalized 
Specification

Business system 
corresponds better to what 
business specialist wanted 
as formalized spefiffation 
is easier to understand 
by both parties

Work is effient and fan 
be automated – few if any 
software specialists are 
needed for producing 
business systems

Documentation

Software 
Generator

Business 
System

Problem 
Model

Software 
Specialist

Analyst



7.6.18 Copyright © Alar Raabe 2018


	Slide 1
	Slide 2
	Slide 3
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 31

